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Abstract
The polarization of radiation emitted in spectral lines provides an important
diagnostic tool when the relationship between the mechanisms that excite the
atomic or molecular energy levels and the polarization is understood. The gas is
assumed to be in statistical equilibrium and we present a general formulation of
the theory in which all collisional and radiative excitation and decay processes
are included. The colliding particles are assumed to have an anisotropic velocity
distribution with cylindrical symmetry and the theory allows for rotation of the
axis of observation. Some assumptions made in previous work are removed
by the introduction of a completely quantum-mechanical description of the
collision processes. Such a theory is important both for the detailed analysis of
collision experiments in the laboratory and for the analysis of spectra emitted
by astrophysical plasmas.

PACS numbers: 32.30.Jc, 32.70.Fw, 34.10.+x, 95.30.Gv, 95.30.Ky

1. Introduction

In the field of atomic collision physics, analysis of the polarization of photons and electrons
produced by a collision is the key to understanding its dynamical evolution.

One of the earliest formulations of the theory of the polarization of spectral line radiation
is that by Percival and Seaton [1]. They formulate the problem for electron impact excitation,
and consider the cases of pure LS coupling, and both fine and hyperfine structure. However,
they introduced restrictions that limited the scope for application of their theory, namely that
excitation is by a monodirectional unpolarized beam of electrons colliding with unpolarized
atoms in the ground state that have zero orbital angular momentum and that the axis of
quantization is in the direction of the electron beam. Syms et al [2] extended their theory
to include degeneracy in the initial energy level, but their agreement with the experiment for
hydrogen was limited by the uncertainty of the theoretical scattering data available.
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Scattering experiments to measure polarization, orientation and alignment were first
carried out in the late 1960s and the experimental and theoretical developments have been
described in detail in the book by Andersen and Bartschat [3]. Polarization of Lyα and Lyβ

radiation from hydrogen excited by electron impact has recently been measured by James
et al [4, 5] for incident electron energies up to 1800 eV and 1000 eV respectively and excellent
agreement with close-coupling theory obtained.

A pioneering paper on the use of irreducible tensor techniques and their application to
the density matrix for problems of optical pumping and relaxation processes in atoms was
published by Omont [6]. Also the use of density matrix theory for many problems in modern
atomic physics, including the processes of interest here, has been comprehensively described
by Blum [7]. The case of collision-induced alignment in atom–molecule collisions has been
considered by Follmeg et al [8] who also use a density matrix formulation.

Density matrix theory was first applied to astrophysical plasmas by Sahal–Bréchot in
1977 [9] to simplify the solution of statistical equilibrium equations and hence obtain the
polarization of spectral lines emitted from the solar corona. In 1997, Fujimoto and Kazantzev
[10] reviewed the theory of plasma polarization spectroscopy and its importance for the
analysis of conditions in plasmas such as a tokamak plasma, laser produced plasmas and solar
flares. Recently, Landi Degl’Innocenti and Landolfi [11] have published a valuable book which
brings together the necessary quantum mechanics, atomic physics, quantum electrodynamics
and radiative transfer theory required for a consistent description of all the known physical
phenomena that can cause polarization, with particular applications to spectropolarimetry,
solar and non-solar.

Polarization of spectral lines has been observed in chromospheric flares and stellar sources
and detailed observations have become available with the improvement of measuring devices,
see Hénoux et al [12, 13] and Vogt and Hénoux [14]. Analyses of solar flares have been
carried out for both proton and electron collisions, see Aboudarham et al [15], Sahal–Bréchot
et al [16], Vogt et al [17, 18], Balança et al [19] and Balança and Feautrier [20]. Their
conclusions are that electron bombardment is unlikely to be important and that so far proton
beams have not been proved to be an explanation for the observed linear polarization, see
Štěpan et al [21]. Theoretical studies of x-ray line emission from highly charged ions excited
by electron collisions are important for the interpretation of spectra of the solar corona and
electron-beam ion trap experiments, see Bensaid et al [22] and references therein, where dipole
and quadrupole transitions and hyperfine structure may all have to be included.

It is also possible that a neutral beam of protons and electrons of equal velocity may be
responsible for the heat transfer between the corona and the chromosphere and may cause the
observed polarization of Hα . More detailed observations of the Sun and other sources made
with a variety of instruments will soon become available. A general formulation is required
that links the anisotropy of the velocity distribution of the colliding particles to the observed
polarization. In the present formulation the assumptions that applied in earlier work about the
nature of the colliding particles, their angular momenta and their direction relative to that of
the observer are removed. This theory used in conjunction with accurate collision data that
are now increasingly available will permit the full exploitation of a diagnostic analysis.

The plan of the paper is as follows. In section 2, the general background to the theory is
described and in section 3 we introduce irreducible representations of the density matrix and
the collisional and radiative rates. In section 4, the analysis of line polarization is presented
and in section 5 the relative populations of the target energy levels are described by statistical
equilibrium equations. In section 6, detailed expressions required for the evaluation of the
collisional excitation and deexcitation rates using a full quantum-mechanical formulation are
obtained using a pair-coupling scheme for the target-perturber system. Rates for absorption
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and spontaneous and induced emission are discussed in section 7. In section 8, we reproduce
the result of Follmeg et al [8] for the tensorial collision cross section from which the result
for LS coupling is extracted. We also modify the theory for the case of monoenergetic beams
of colliding particles. In section 9, we give specific results for some special cases of practical
interest and finally conclusions follow in section 10.

2. General theoretical background

We consider a beam of particles colliding with an isolated target immersed in an external
radiation field. Target energy levels are excited by collisional or radiative processes and
subsequently line radiation is emitted which can be observed. In this paper we consider
only electric dipole transitions, but the generalization to magnetic dipole transitions is
straightforward, see Sahal–Bréchot [9]. We now introduce the following definitions. A
photon is emitted in the direction k̂ with momentum h̄k, and the particle that excites the atom
is incident in the direction v̂ with relative velocity v. We define fixed axes Oxyz and vectors k
and v have orientations in this fixed frame of reference specified by the spherical polar angles
(θk, φk) and (θv, φv), respectively. The quantization axis, Oz, is assumed to be along the axis
of cylindrical symmetry of the velocity distribution. We also define two polarization vectors,
ε‖ and ε⊥, which are such that ε‖, ε⊥ and k̂ form a right-handed set of mutually orthogonal
unit vectors. Circular polarization vectors are then defined by

ε1 = − 1√
2
(ε‖ + iε⊥); ε−1 = 1√

2
(ε‖ − iε⊥);

ε‖ = 1√
2
(ε−1 − ε1); ε⊥ = i√

2
(ε1 + ε−1),

(1)

see Blum [7]. In the following analysis initial and final states of the target are labelled by i
and f respectively. A general linear polarization vector is defined by

ε = cos β ε‖ + sin β ε⊥ (2)

and the transition probability per unit time for emission of a photon with frequency ν,
momentum h̄k and linear polarization vector ε into solid angle dk̂ is given by

A(i → f ; k̂, ε) dk̂ = (2πν)3

2πc3h̄
|〈i|d · ε|f 〉|2 dk̂, (3)

see, for example, Merzbacher [23] and Messiah [24]. The dipole operator is

d = −e
∑

n

rn, (4)

where the target electrons have position vectors rn and energy conservation gives

hν = Ei − Ef , (5)

where Ei and Ef are the energies of the initial and final states of the target respectively. We
define the sum over both polarizations by

A(i → f ; k̂) ≡ A(i → f ; k̂, ε‖) + A(i → f ; k̂, ε⊥) = 2A(i → f ; k̂, ε1) (6)

and the total emission rate is obtained by integrating A(i → f ; k̂) over all angles of emission
so that on using equations (3) and (6) we obtain the Einstein A coefficient

A(i → f ) ≡
∫

A(i → f ; k̂) dk̂ = 4(2πν)3

3c3h̄
|〈i|d|f 〉|2. (7)
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The specific intensity I(k̂, ν) of the local radiation field is defined as the energy per unit
time flowing through unit cross-sectional area perpendicular to the direction k̂ per unit solid
angle and in unit frequency interval. We then expand I(k̂, ν) in terms of multipoles defined
by

J κ
0 (ν) = 1

4π

∫
I(k̂, ν) Pκ(cos θk) dk̂, (8)

where Pκ(cos θk) is a Legendre polynomial and J 0(ν) is the mean intensity. We note that in
the notation of Landi Degl’Innocenti and Landolfi [11] equation (5.164),

J 0
0 (ν) = J 0

0 (ν); J 2
0 (ν) =

√
2J 2

0 (ν). (9)

The polarization of the emitted radiation can be described by the Stokes parameters
(I,Q,U, V ), a notation first introduced by Walker [25]. Other notations for these parameters
that appear in the literature are (I,M,C, S), see Jones [26] and Perrin [27] and also
(s0, s1, s2, s3) used by Andersen and Bartschat [3]. Blum [7] introduces the parameters
(I, η1, η2, η3) where

I = s0; η1 = s2/s0; η2 = −s3/s0; η3 = s1/s0. (10)

In this paper, following the work of Sahal–Bréchot [9] we assume that the incident radiation
is unpolarized and our choice of reference axes ensures that both Stokes parameters U and V
are zero.

We now consider the transition i → f . If Ni is the number density of atoms in level i,
the total intensity I (k̂, ν) of the transition when a photon of linear polarization ε is emitted is
given by

I (k̂, ε, ν) = hν Ni A(i → f ; k̂, ε), (11)

cf [9], where I (k̂, ν) is in units of energy per unit time per unit volume per unit solid angle per
unit frequency interval. The linear polarization of the radiation is described by the fraction

P = Q/I ; I = I‖ + I⊥; Q = I‖ − I⊥ (12)

and I‖ and I⊥ are given by equation (11) with ε = ε‖ and ε⊥, respectively. This corresponds
to setting β = 0 and π/2 in equation (2). Equations (1), (3) and (11) then give

I‖ ± I⊥ = ± (2πν)4

πc3
Ni 	(〈i|d · ε±1|f 〉∗〈i|d · ε1|f 〉). (13)

An expression for the number density Ni in equation (11) can be obtained by considering
the statistical equilibrium of the populations of the energy levels. If P(i → f ) denotes the
total probability of a transition i → f , we have for a system with n levels∑

i �=f

Ni P(i → f ) = Nf

∑
i �=f

P(f → i), f = 1, 2, . . . , n, (14)

subject to the constraint
n∑

i=1

Ni = NT , (15)

where NT is the total number density of the target particles. Equation (14) can be rewritten in
the form

n∑
i=1

Ni P(i → f ) = 0; P(f → f ) = −
∑
i �=f

P(f → i), (16)
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where P(f, f ) is the relaxation term, see [17]. The matrix P has elements resulting from
collisional and radiative processes, i.e.

P(i → f ) = C(i → f ) + R(i → f ) (17)

where rates for excitation/deexcitation have positive/negative signs respectively. Target-
perturber collisions can populate or depopulate levels, but the radiative rate corresponds to
spontaneous and stimulated emission processes for Ei > Ef and to absorption if Ei < Ef . If
NP is the number density of the exciting particles, then the number of transitions i → f per
unit time produced by collisions is given by

C(i → f ) = NP

∫
σ(i → f ;v) vf (v) dv;

∫
f (v) dv = 1, (18)

where the velocity distribution function f (v) has cylindrical symmetry and σ(i → f ;v) is
the collision cross section for the transition i → f .

Absorption and stimulated emission are described by B coefficients which are related to
the A coefficients in (3) by

A(i → f ; k̂, ε) = 2hν3

c2
B(i → f ; k̂, ε); B(f → i; k̂, ε) = B(i → f ; k̂, ε) (19)

and

B(i → f ; k̂) ≡ B(i → f ; k̂, ε‖) + B(i → f ; k̂, ε⊥) = 2B(i → f ; k̂, ε1). (20)

Then on using equations (6), (17) and (20), the number of radiative transitions from level i per
unit volume per unit time is given by

R(i → f ) = A(i → f ) +
∫

B(i → f ; k̂) I(k̂, ν) dk̂; Ei > Ef (21)

and

R(i → f ) =
∫

B(i → f ; k̂) I(k̂, ν) dk̂; Ei < Ef . (22)

Finally, it is useful to introduce the density matrix of the system to describe the populations
of the energy levels. If ρ is the density operator, see Blum [7], then for a state i

Ni = 〈i|ρ|i〉NT (23)

and we neglect off-diagonal elements of ρ since we will assume that coherences are
unimportant. The cylindrical symmetry of f (v) means that there are no Zeeman coherences
and we assume that non-degenerate energy levels are well separated, see [17].

3. Irreducible tensorial representations

Accurate radiative and collisional data for many systems can now be produced from complex
close-coupling calculations involving many coupled channels, cf Burke [28]. In order to be
able to use such results in the solution of the statistical equilibrium equations, it is crucial to
obtain a general expression for the polarization of the radiation emitted in a transition in which
all sums over magnetic quantum numbers have been carried out analytically, so that the only
quantities required are independent of orientation. This can be achieved by introducing
irreducible tensorial representations of the various physical quantities in equations (16)
and (17).

We specify a state of the target by the quantum numbers αJM where J and M refer to
the total momentum and α denotes all other relevant quantum numbers. The population of the
state αJM is given by (23), i.e.

NαJM = NαJ −M = 〈αJM|ρ|αJM〉NT (24)
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since Stokes parameters U and V are both zero and only state alignment can occur. We now
introduce multipolar expansion elements ρλ

0 (αJ ) defined in [7] by

ρλ
0 (αJ ) =

∑
M

(−1)J−M(2λ + 1)
1
2

(
J λ J

−M 0 M

)
〈αJM|ρ|αJM〉, (25)

which are identical to the elements αJαJ ρλ
0 defined by Sahal–Bréchot [9]. The properties of

the 3j coefficient
(a b c

d e f

)
are listed in equations (A.1) and (A.2) and equation (25) may be

inverted to give

〈αJM|ρ|αJM〉 =
∑

λ

(−1)J−M(2λ + 1)
1
2

(
J λ J

−M 0 M

)
ρλ

0 (αJ ), (26)

where (24) implies that λ must be even. On using the Wigner–Eckhart theorem (A.3), ρλ
0 (αJ )

can also be expressed in terms of a reduced matrix element, i.e.

(2λ + 1)
1
2 ρλ

0 (αJ ) = 〈αJ‖ρ(λ)‖αJ 〉. (27)

Quantities of the type U(i → f ) where U denotes P , C, R, σ , A or B, see (7), (17), (18)
and (6), can also be expanded in terms of multipoles, so that

U(αJM → α′J ′M ′) =
∑
λλ′

(−1)J−M+J ′−M ′
[(2λ + 1)(2λ′ + 1)]

1
2

×
(

J λ J

−M 0 M

) (
J ′ λ′ J ′

−M ′ 0 M ′

)
Uλλ′

(αJ → α′J ′) (28)

and on inverting (28)

Uλλ′
(αJ → α′J ′) =

∑
MM ′

(−1)J−M+J ′−M ′
[(2λ + 1)(2λ′ + 1)]

1
2

×
(

J λ J

−M 0 M

) (
J ′ λ′ J ′

−M ′ 0 M ′

)
U(αJM → α′J ′M ′). (29)

Also since f (v) has cylindrical symmetry about the quantization axis, we can expand the
velocity distribution so that

f (v) = 1

4π

∑
κ

(2κ + 1)f κ
0 (v)Pκ(cos θv);

∫ ∞

0
v2f 0

0 (v) dv = 1, (30)

where only even values are included in the sum over κ . We then introduce the tensorial
collision cross section κσ λλ′

(αJ → α′J ′; v) defined by

κσ λλ′
(αJ → α′J ′; v) = 1

4π

∫
σλλ′

(αJ → α′J ′;v) Pκ(cos θv) dv̂ (31)

and so

σλλ′
(αJ → α′J ′;v) =

∑
κ

(2κ + 1) κσ λλ′
(αJ → α′J ′; v) Pκ(cos θv). (32)

We can define similar quantities for the radiative transitions and from equations (8), (20)
and (29) we have that

I(k̂, ν) =
∑

κ

(2κ + 1)J κ
0 (ν)Pκ(cos θk), (33)

κBλλ′
(αJ → α′J ′) =

∫
Bλλ′

(αJ → α′J ′; k̂)Pκ(cos θk) dk̂ (34)

and so

Bλλ′
(αJ → α′J ′; k̂) = 1

4π

∑
κ

(2κ + 1) κBλλ′
(αJ → α′J ′) Pκ(cos θk). (35)

6
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4. Analysis of line polarization

The intensity of the line radiation is described by (13) and we assume that the initial and
final states have degenerate substates specified by the quantum numbers αiJiMi and αf Jf Mf ,
respectively. We introduce the rotation operator D(k̂) so that

d · εμ =
(

4π

3

)1
2 ∑

μ′
D(1)

μ′μ(k̂) d Y1μ′(d̂), μ = ±1, (36)

and therefore on using (A.3), we obtain

〈αiJiMi |d · εμ|αf Jf Mf 〉 =
∑
μ′

D(1)
μ′μ(k̂)(−1)Ji−Mi

(
Ji 1 Jf

−Mi μ′ Mf

)
〈αiJi‖d‖αf Jf 〉. (37)

Results (37) and (A.4) can then be combined so that

〈αiJiMi |d · εμ|αf Jf Mf 〉∗〈αiJiMi |d · ε1|αf Jf Mf 〉 = |〈αiJi‖d‖αf Jf 〉|2 T (Ji, Jf , μ; k̂),

(38)

where

T (Ji, Jf , μ; k̂) ≡
∑
μ′

(−1)μ
′−μ

[(
Ji 1 Jf

−Mi μ′ Mf

)]2

×
∑
lm

(2l + 1)

(
1 1 l

−μ′ μ′ 0

)
D(l)∗

0m (k̂)

(
1 1 l

−μ 1 m

)
. (39)

We now set μ = 1 in (39), use (3), (6), (38), (A.2) and (A.5), integrate over all angles
of emission and sum over μ′ and Mf. Then the Einstein A coefficient for the transition
αiJi → αf Jf is given by

A(αiJi → αf Jf ) = 4(2πν)3

3c3h̄

1

(2Ji + 1)
|〈αiJi‖d‖αf Jf 〉|2. (40)

In order to evaluate I‖ ± I⊥ in (13) we require the sum

NT

∑
MiMf λ

ρλ
0 (αiJi) (−1)Ji−Mi (2λ + 1)

1
2

(
Ji λ Ji

−Mi 0 Mi

)

×〈αiJiMi |d · εμ|αf Jf Mf 〉∗〈αiJiMi |d · ε1|αf Jf Mf 〉 (41)

where we have used (24) and (26). On combining (38), (39) and (41), the sums over μ′ and
Mf can be evaluated using (A.6) and then the sum over Mi follows from (A.2). Finally using
(40), (13) becomes

I‖ + μI⊥ = μ
hν

4π
NT 3(2Ji + 1) (−1)Ji+Jf +1 A(αiJi → αf Jf )

∑
λ

ρλ
0 (αiJi) (2λ + 1)

1
2

×
{
Ji Ji λ

1 1 Jf

} (
1 1 λ

−μ 1 μ − 1

)
D(λ)∗

0μ−1(k̂); μ = ±1. (42)

We can take φk = 0 without loss of generality and so the sum in (42) is real, see (A.5).
Therefore, by considering the cases μ = 1, λ = 0, 2 and μ = −1, λ = 2 in (42) and using
(A.5), the polarization fraction in (12) is given by

P = −3 sin2 θk η

1 + (3 cos2 θk − 1)η
, (43)

7
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where for a radiative transition αiJi → αf Jf

η ≡ 1

2
√

2

{
Ji Ji 2
1 1 Jf

}
{
Ji Ji 0
1 1 Jf

} ρ2
0(αiJi)

ρ0
0(αiJi)

, (44)

cf Sahal–Bréchot [9], equations (4) and (14) and Andersen and Bartschat [3] equation (7.6).
If there are several levels αiJi and αf Jf that are essentially degenerate, then (44) must be
replaced by

η ≡ 1

2
√

2

∑
αiJiαf Jf

2(Ji → Jf )A(αiJi → αf Jf ) ρ2
0(αiJi)∑

αiJiαf Jf
0(Ji → Jf )A(αiJi → αf Jf ) ρ0

0(αiJi)
, (45)

where

λ(Ji → Jf ) ≡ (−1)Ji+Jf +1 (2Ji + 1)

{
Ji Ji λ

1 1 Jf

}
(46)

in agreement with the result given by Vogt et al [17].

5. Statistical equilibrium equations

5.1. General formulation

From equations (18), (24), (26) and (28), we obtain∑
i

NiC(i → f ) = NT NP

∑
αiJiMi

〈αiJiMi |ρ|αiJiMi〉
∫

σ(αiJiMi → αf Jf Mf ;v) vf (v) dv

= NT NP

∑
αiJiλλ′λ′′

[(2λ + 1)(2λ′ + 1)(2λ′′ + 1)]
1
2 ρλ

0 (αiJi)

×
∑
Mi

(−1)Jf −Mf

(
Ji λ Ji

−Mi 0 Mi

)(
Ji λ′ Ji

−Mi 0 Mi

)(
Jf λ′′ Jf

−Mf 0 Mf

)

×
∫

σλ′λ′′
(αiJi → αf Jf ;v) vf (v) dv. (47)

We use (A.2) to evaluate the sum over Mi in (47) and so∑
i

NiC(i → f ) = NT NP

∑
αiJiλλ′

(−1)Jf −Mf (2λ′ + 1)
1
2

(
Jf λ′ Jf

−Mf 0 Mf

)
ρλ

0 (αiJi)

×
∫

σλλ′
(αiJi → αf Jf ;v) vf (v) dv, (48)

where from equations (30) and (32) we obtain∫
σλλ′

(αiJi → αf Jf ;v) vf (v) dv =
∑

κ

(2κ + 1)

×
∫

κσ λλ′
(αiJi → αf Jf ; v) f κ

0 (v) v3 dv. (49)

Similarly, from equations (6), (21), (22), (26), (33) and (34)∑
i

NiR(i → f ) = NT

∑
αiJiλλ′

(−1)Jf −Mf (2λ′ + 1)
1
2

(
Jf λ′ Jf

−Mf 0 Mf

)
ρλ

0 (αiJi)

×
∫

Bλλ′
(αiJi → αf Jf ; k̂) I(k̂, ν) dk̂, (50)

8
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cf (48), where because we have set φk = 0∫
Bλλ′

(αiJi → αf Jf ; k̂) I(k̂, ν) dk̂ =
∑

κ

(2κ + 1) κBλλ′
(αiJi → αf Jf )J κ

0 (ν). (51)

Finally on setting U = P in (29) and also using relations (16), (17), (26), (48) and (50),
the statistical equilibrium equations (16) can be rewritten in the form∑

αiJiλ

Pλλ′
(αiJi → αf Jf ) ρλ

0 (αiJi) = 0. (52)

This completes the analysis required for the polarization of the radiation as specified by
equations (12)–(14).

5.2. Approximate solutions

If collisional excitation and spontaneous emission are the dominant processes so that the other
processes can be neglected, the statistical equilibrium equations simplify considerably. We
assume that the excitation of states αiJiMi is only by collisions from initial states αgJgMg ,
followed by decay through spontaneous emission to states αf Jf Mf . Then using (14) and
(29), (52) reduces to∑
αgJgλ

ρλ
0 (αgJg) Cλλ′

trn (αgJg → αiJi) = ρλ′
0 (αiJi)

∑
αf Jf

A(αiJi → αf Jf ), (53)

where the subscript ‘trn’ is introduced to emphasize that transitions between distinct states
of the target are being considered. This gives an explicit expression for ρλ′

0 (αiJi) which can
then be used in (44) and (45) to give the polarization of the radiation. If in addition, the initial
states are equally populated, then from (25) and (26) NαgJgMg

≡ NαgJg
/(2Jg + 1), say, so that

ρλ
0 (αgJg) = δλ0 (2Jg + 1)

1
2 NαgJg

/
NT . (54)

6. Tensorial cross sections

6.1. Collisional transitions

We shall assume that the hyperfine structure of the target is not important but in many
applications its fine structure cannot be neglected. In this section, if we specify the state
i of the target by the quantum numbers αiJiMi and the corresponding colliding particle by
quantum numbers limisms , then the cross section for the collisional excitation i → f in an
uncoupled representation is

σtrn(αiJiMi → αf Jf Mf ;v) =
(

2πh̄

Mv

)2 1

(2s + 1)

∑
limi l

′
im

′
i

∑
lf mf msm′

s

× ili−l′i Y ∗
limi

(θv, φv)Yl′im
′
i
(θv, φv)

×〈αiJiMilimisms |T |αf Jf Mf lf mf sm′
s〉

× 〈αiJiMil
′
im

′
i sms |T |αf Jf Mf lf mf sm′

s〉∗, (55)

cf Geltman [29]. In equation (55), M is the reduced mass of the target–particle system and T
is the transition matrix evaluated for the total energy of the system given by

E = Ei + 1
2M v2. (56)

9
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We use a pair-coupling notation in which the target quantum numbers JiMi and Jf Mf couple
with limi, l′im

′
i and lf mf respectively to give quantum numbers kiμi , k′

iμ
′
i and kf μf . These

then couple with the spin quantum numbers sms and sm′
s of the scattered particle to give

the total angular momentum quantum numbers JM and J ′M ′. The transformation of the
transition matrix is given by

〈αiJiMilimisms |T |αf Jf Mf lf mf sm′
s〉

=
∑
JM

∑
kiμikf μf

C
Ji li ki

Mimiμi
C

kisJ
μimsM

C
Jf lf kf

Mf mf μf
C

kf sJ

μf m′
sM

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉 (57)

where Cabc
def denotes a Clebsch–Gordon coefficient, see (A.1). On substituting equation (57)

into equation (55) we obtain

σtrn(αiJiMi → αf Jf Mf ;v) =
(

2πh̄

Mv

)2 ∑
JJ ′

∑
limi l

′
im

′
i lf

∑
kik

′
i kf k′

f

S(Mi,Mf ,mi,m
′
i )

× ili−l′i Y ∗
limi

(θv, φv)Yl′im
′
i
(θv, φv)

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉〈αiJi l
′
ik

′
i sJ

′|T |αf Jf lf k′
f sJ ′〉∗, (58)

where

S(Mi,Mf ,mi,m
′
i ) ≡ 1

(2s + 1)

∑
MM ′

∑
mf msm′

s

∑
μiμ

′
iμf μ′

f

C
Ji li ki

Mimiμi
C

Ji l
′
i k

′
i

Mim
′
iμ

′
i

×C
Jf lf kf

Mf mf μf
C

Jf lf k′
f

Mf mf μ′
f
C

kisJ
μimsM

C
k′
i sJ

′

μ′
imsM ′C

kf sJ

μf m′
sM

C
k′
f sJ ′

μ′
f m′

sM
′ . (59)

On using (29), we obtain

σλλ′
trn (αiJi → αf Jf ;v) =

∑
MiMf

(−1)Ji−Mi+Jf −Mf [(2λ + 1)(2λ′ + 1)]
1
2

×
(

Ji λ Ji

−Mi 0 Mi

) (
Jf λ′ Jf

−Mf 0 Mf

)
σtrn(αiJiMi → αf Jf Mf ;v) (60)

and using (A.6) the sums over Mf mf , μf m′
s and MM ′ms in (58)–(60) can be carried out

sequentially to yield

σλλ′
trn (αiJi → αf Jf ;v) =

(
2πh̄

Mv

)2 1

(2s + 1)

∑
JJ ′

∑
li l

′
i lf

∑
kik

′
i kf k′

f

∑
Mimim

′
iμiμ

′
i

×C
Ji li ki

Mimiμi
C

Ji l
′
i k

′
i

Mim
′
iμ

′
i

(
Ji λ Ji

−Mi 0 Mi

)
(−1)Ji−Mi−Jf +lf (−1)ki+k′

i+kf +k′
f +μi

× ili−l′i Y ∗
limi

(θv, φv)Yl′im
′
i
(θv, φv)

× (2J + 1)(2J ′ + 1) [(2λ + 1)(2λ′ + 1)(2kf + 1)(2k′
f + 1)]

1
2

×
(

k′
i ki λ′

−μ′
i μi 0

) {
k′
i ki λ′

J J ′ s

}{
k′
f kf λ′

J J ′ s

} {
kf k′

f λ′

Jf Jf lf

}

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉〈αiJi l
′
ik

′
i sJ

′|T |αf Jf lf k′
f sJ ′〉∗. (61)

The tensorial cross section is defined by (31) and so using (A.7) and (A.8) the final sums over
the magnetic quantum numbers in (61) are carried out and we obtain the following explicit

10



J. Phys. A: Math. Theor. 42 (2009) 445501 G Peach et al

general expression for the tensorial cross section:

κσ λλ′
trn (αiJi → αf Jf ; v) = π

(
h̄

Mv

)2 1

(2s + 1)
[(2λ + 1)(2λ′ + 1)]

1
2

(
λ λ′ κ

0 0 0

)

×
∑
JJ ′

∑
li l

′
i lf

∑
kik

′
i kf k′

f

ili−l′i (2J + 1)(2J ′ + 1)(−1)Jf +l′i+lf +k′
i+k′

f −kf

× [(2ki + 1)(2k′
i + 1)(2kf + 1)(2k′

f + 1)(2li + 1)(2l′i + 1)]
1
2

×
(

li l′i κ

0 0 0

) {
k′
f kf λ′

Jf Jf lf

}{
k′
i ki λ′

J J ′ s

} {
k′
f kf λ′

J J ′ s

} ⎧⎨
⎩

Ji ki li

Ji k′
i l′i

λ λ′ κ

⎫⎬
⎭

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉〈αiJi l
′
ik

′
i sJ

′|T |αf Jf lf k′
f sJ ′〉∗. (62)

Note that since κ is always even, li − l′i is even and hence the expression given in (62) is real.

6.2. Collisional relaxation

The statistical equilibrium equations (16) include the probability of relaxation processes
P(f → f ) taking place and we now consider the collisional depopulation of a level i caused
by a transition i → f . The collisional relaxation cross section can be written as

σrel(αiJiMi → αf Jf ;v) =
∑
Mf

σtrn(αiJiMi → αf Jf Mf ;v) (63)

and so using equation (A.2) we evaluate successively the sums over Mf mf , μf m′
s and Mms

in (58) and (59) to obtain

σrel(αiJiMi → αf Jf ;v) =
(

2πh̄

Mv

)2 1

(2s + 1)

∑
J li l

′
i lf kikf

∑
mim

′
iμi

(2J + 1)

(2ki + 1)

×C
Ji li ki

Mimiμi
C

Ji l
′
i ki

Mim
′
iμi

ili−l′i Y ∗
limi

(θv, φv)Yl′im
′
i
(θv, φv)

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉〈αiJi l
′
ikisJ |T |αf Jf lf kf sJ 〉∗. (64)

For relaxation processes a multipolar expansion of the cross section is defined by, see (29),

σλλ′
rel (αiJi → αf Jf ;v) =

∑
Mi

[(2λ + 1)(2λ′ + 1)]
1
2

(
Ji λ Ji

−Mi 0 Mi

) (
Ji λ′ Ji

−Mi 0 Mi

)

× σrel(αiJiMi → αf Jf ;v). (65)

Then introducing the tensorial cross section (31) and using (A.7), we obtain

κσ λλ′
rel (αiJi → αf Jf ; v) = π

(
h̄

Mv

)2 1

(2s + 1)
[(2λ + 1)(2λ′ + 1)]

1
2

×
∑

J li l
′
i lf kikf

(2J + 1)

(2ki + 1)
[(2li + 1)(2l′i + 1)]

1
2

(
li l′i κ

0 0 0

)
ili−l′i

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉〈αiJi l
′
ikisJ |T |αf Jf lf kf sJ 〉∗

×
∑

Mimiμi

(−1)mi C
Ji li ki

Mimiμi
C

Ji l
′
i ki

Mim
′
iμi

×
(

Ji λ Ji

−Mi 0 Mi

) (
Ji λ′ Ji

−Mi 0 Mi

) (
li l′i κ

−mi mi 0

)
. (66)
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The sums over miμi and Mi in (66) are carried out using (A.6) and then finally

κσ λλ′
rel (αiJi → αf Jf ; v) = π

(
h̄

Mv

)2 1

(2s + 1)
[(2λ + 1)(2λ′ + 1)]

1
2

×
(

λ λ′ κ

0 0 0

) ∑
J li l

′
i lf kikf

ili−l′i (2J + 1)[(2li + 1)(2l′i + 1)]
1
2 (−1)Ji−ki

×
(

li l′i κ

0 0 0

) {
λ λ′ κ

Ji Ji Ji

}{
li l′i κ

Ji Ji ki

}

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉〈αiJi l
′
ikisJ |T |αf Jf lf kf sJ 〉∗. (67)

7. Tensorial radiative rates

7.1. Absorption and stimulated emission

From equations (20), (38) and (39), we obtain

B(αiJiMi → αf Jf Mf ; k̂) = 3

4π
(2Ji + 1)B(αiJi → αf Jf )T (Ji, Jf , 1; k̂) (68)

and using definition (29)

Bλλ′
trn (αiJi → αf Jf ; k̂) =

∑
MiMf

(−1)Ji−Mi+Jf −Mf [(2λ + 1)(2λ′ + 1)]
1
2

×
(

Ji λ Ji

−Mi 0 Mi

) (
Jf λ′ Jf

−Mf 0 Mf

)
B(αiJiMi → αf Jf Mf ; k̂). (69)

On combining equations (68) and (69), we use (A.8) to carry out the sums over the magnetic
quantum numbers and so

Bλλ′
trn (αiJi → αf Jf ; k̂) = 3

4π
(2Ji + 1)B(αiJi → αf Jf )

∑
l

(2l + 1)

(
1 1 l

−1 1 0

) (
λ λ′ l

0 0 0

)

× [(2λ + 1)(2λ′ + 1)]
1
2 (−1)λ

′

⎧⎨
⎩

Ji Jf 1
Ji Jf 1
λ λ′ l

⎫⎬
⎭D(l)∗

00 (k̂). (70)

Then it follows directly from (34) and (A.5) that

κBλλ′
trn (αiJi → αf Jf ) = 3(2Ji + 1)B(αiJi → αf Jf )

(
1 1 κ

−1 1 0

) (
λ λ′ κ

0 0 0

)

× [(2λ + 1)(2λ′ + 1)]
1
2 (−1)λ

′

⎧⎨
⎩

Ji Jf 1
Ji Jf 1
λ λ′ κ

⎫⎬
⎭ . (71)

7.2. Radiative relaxation

The multipole coefficients for radiative relaxation are defined by

Bλλ′
rel (αiJi → αf Jf ; k̂) =

∑
MiMf

[(2λ + 1)(2λ′ + 1)]
1
2

×
(

Ji λ Ji

−Mi 0 Mi

) (
Ji λ′ Ji

−Mi 0 Mi

)
B(αiJiMi → αf Jf Mf ; k̂), (72)

12



J. Phys. A: Math. Theor. 42 (2009) 445501 G Peach et al

cf (65) and (69). By combining (68) and (72), the sums over μ′ and Mf followed by the sum
over Mi can be evaluated using (A.6) to give

Bλλ′
rel (αiJi → αf Jf ; k̂) = 3

4π
(2Ji + 1)B(αiJi → αf Jf )

∑
l

(2l + 1)

(
1 1 l

−1 1 0

) (
λ λ′ l

0 0 0

)

× [(2λ + 1)(2λ′ + 1)]
1
2 (−1)Ji−Jf +1

{
Ji Ji l

1 1 Jf

}{
λ λ′ l

Ji Ji Ji

}
D(l)∗

00 (k̂). (73)

Then as above it follows that

κBλλ′
rel (αiJi → αf Jf ) = 3(2Ji + 1)B(αiJi → αf Jf )

(
1 1 κ

−1 1 0

) (
λ λ′ κ

0 0 0

)

× [(2λ + 1)(2λ′ + 1)]
1
2 (−1)Ji−Jf +1

{
λ λ′ κ

Ji Ji Ji

} {
Ji Ji κ

1 1 Jf

}
. (74)

Results (71) and (74) agree with those given by Vogt et al [18].

7.3. Spontaneous emission

The rate for spontaneous emission is given by the Einstein A coefficient, see (40). We merely
note that by setting κ = 0 and λ = λ′ in (74), and using (A.9) and (A.10), we obtain

0Bλλ
rel (αiJi → αf Jf ) = 3(2Ji + 1)B(αiJi → αf Jf )

(
1 1 0

−1 1 0

)(
λ λ 0
0 0 0

)

× (2λ + 1) (−1)Ji−Jf +1

{
λ λ 0
Ji Ji Ji

} {
Ji Ji 0
1 1 Jf

}

= c2

2hν3
A(αiJi → αf Jf ), (75)

as expected.

8. Tensorial collision cross sections: special cases

8.1. Excitation by spinless particles

The expression for the tensorial cross section in (66) simplifies for s = 0 since then
ki = kf = J and k′

i = k′
f = J ′ and so on using (A.10) and the symmetry properties of

the 6j and 9j symbols we obtain

κσ λλ′
trn (αiJi → αf Jf ; v) = π

(
h̄

Mv

)2

[(2λ + 1)(2λ′ + 1)]
1
2

(
λ λ′ κ

0 0 0

)

×
∑
JJ ′

∑
li l

′
i lf

ili−l′i (2J + 1)(2J ′ + 1) (−1)Jf +l′i+lf +J

× [(2li + 1)(2l′i + 1)]
1
2

(
li l′i κ

0 0 0

){
J J ′ λ′

Jf Jf lf

} ⎧⎨
⎩

Ji J li

Ji J ′ l′i
λ λ′ κ

⎫⎬
⎭

×〈αiJi liJ |T |αf Jf lf J 〉〈αiJi l
′
iJ

′|T |αf Jf lf J ′〉∗. (76)

This expression agrees with that given by Follmeg et al [8] who consider collision-induced
alignment in the system N+

2–He.
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8.2. LS coupling

Individual lines within a multiplet may not be distinguishable. If the plasma densities are
such that the widths of the lines produced by pressure broadening are comparable with the
fine structure splittings, then the components of the multiplet overlap and the problem is best
formulated in LS coupling. This formulation was used in [15] and follows directly from
the theory in [1]. However, in high-density plasmas, isotropic collisions with local particles
may become non-negligible and then this depolarizing process can be taken into account in
the solution of the statistical equilibrium equations. In the following discussion we consider
plasmas for which this effect can be neglected.

In this section, we specify a state i of the target plus the colliding particle by the quantum
numbers LiMiSiMSi

and limisms . The spins Si and s couple to give the total spin S and then
by replacing Ji, Jf, J and J ′ by Li, Lf, L and L′, respectively in (76) it follows that the tensorial
excitation cross section in LS coupling is given by

κσ λλ′
trn (αiSiLi → αf Sf Lf ; v) = π

(
h̄

Mv

)2

[(2λ + 1)(2λ′ + 1)
1
2

(
λ λ′ κ

0 0 0

)

×
∑

S

(2S + 1)

(2s + 1)(2Si + 1)

∑
LL′

∑
li l

′
i lf

ili−l′i (2L + 1)(2L′ + 1) (−1)Lf +l′i+lf +L

× [(2li + 1)(2l′i + 1)]
1
2

(
li l′i κ

0 0 0

){
L L′ λ′

Lf Lf lf

} ⎧⎨
⎩

Li L li

Li L′ l′i
λ λ′ κ

⎫⎬
⎭

×〈αiSiLiliSL|T |αf Sf Lf lf SL〉〈αiSiLil
′
iSL′|T |αf Sf Lf lf SL′〉∗. (77)

Similarly, we obtain the relaxation cross section from (67), i.e.

κσ λλ′
rel (αiSiLi → αf Sf Lf ; v) = π

(
h̄

Mv

)2

[(2λ + 1)(2λ′ + 1)]
1
2

(
λ λ′ κ

0 0 0

)

×
∑

S

(2S + 1)

(2s + 1)(2Si + 1)

∑
Lli l

′
i lf

ili−l′i (2L + 1) [(2li + 1)(2l′i + 1)]
1
2 (−1)Li−L

×
(

li l′i κ

0 0 0

) {
λ λ′ κ

Li Li Li

}{
li l′i κ

Li Li L

}

×〈αiSiLiliSL|T |αf Sf Lf lf SL〉〈αiSiLil
′
iSL|T |αf Sf Lf lf SL〉∗. (78)

8.3. Equally populated substates

If the initial target state has equally populated substates, then NαiJiMi
≡ NαiJi

/(2Ji + 1),
ρλ

0 (αiJi) is given by (54) and from (A.9), (A.12) and (66) we have that

κσ 0κ
trn (αiJi → αf Jf ; v) = π

(
h̄

Mv

)2 1

(2s + 1)
[(2κ + 1)(2Ji + 1)]−

1
2

×
∑
JJ ′

∑
li l

′
i lf

∑
kik

′
i kf k′

f

ili−l′i (2J + 1)(2J ′ + 1) (−1)Jf −Ji+lf +k′
f −kf

× [(2ki + 1)(2k′
i + 1)(2kf + 1)(2k′

f + 1)(2li + 1)(2l′i + 1)]
1
2

×
(

li l′i κ

0 0 0

) {
k′
f kf κ

Jf Jf lf

}{
k′
i ki κ

J J ′ s

}{
k′
f kf κ

J J ′ s

} {
li l′i κ

k′
i ki Ji

}

×〈αiJi likisJ |T |αf Jf lf kf sJ 〉〈αiJi l
′
ik

′
i sJ

′|T |αf Jf lf k′
f sJ ′〉∗. (79)
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Also if in addition, the final state αf Jf is also equally populated, then we only need the case
κ = 0 in (79), which reduces to

0σ 00
trn(αiJi → αf Jf ; v) = π

(
h̄

Mv

)2 1

(2s + 1)
[(2Ji + 1)(2Jf + 1)]−

1
2

×
∑

li lf kikf J

(2J + 1)|〈αiJi likisJ |T |αf Jf lf kf sJ 〉|2

=
(

2Ji + 1

2Jf + 1

)1
2

Q(αiJi → αf Jf ; v), (80)

where Q(αiJi → αf Jf ; v) is the usual collision cross section for a transition αiJi → αf Jf ,
cf [29].

8.4. Monoenergetic particle beams

In laboratory collision experiments the target system is prepared in an initial state αgJg and
the system is excited by collisions to a state αiJi using a monoenergetic beam of particles.
The polarization of the radiation emitted in a transition αiJi → αf Jf is then observed, cf
Andersen and Bartschat [3]. If vz is the velocity of the particle beam along the axis Oz, by
setting cos θv = 1 in (32) it follows that

σλλ′
trn (αgJg → αiJi; vz) =

∑
κ

(2κ + 1) κσ λλ′
trn (αgJg → αiJi; vz). (81)

If we assume that initially the target system occupies a single state αgJg which is unpolarized,
i.e. the substates are equally populated, then (48), (53) and (54) give

ρ2
0(αiJi)

ρ0
0(αiJi)

= C02
trn(αgJg → αiJi; vz)

C00
trn(αgJg → αiJi; vz)

= σ 02
trn(αgJg → αiJi; vz)

σ 00
trn(αgJg → αiJi; vz)

. (82)

9. Radiative transitions: special cases

Throughout this section we assume that only collisional excitation and spontaneous emission
processes are important so that the statistical equilibrium equations reduce to the form (53).
Explicit values for the coefficients λ(J

′ → J ) required, see (46), can easily be obtained
from (A.10) and (A.11).

9.1. Transitions in hydrogen

We first consider the Lyman series in hydrogen where the hydrogen atom is initially in the
ground state. Excitation by collisions populates the nl states and then the radiation emitted
in the transition np → 1s is observed. This gives direct experimental information about the
collisional excitation of the np state. If we assume LS coupling, then using (44), (54) and
(A.10), we obtain the simple result

η = 1

2
√

2

{1 1 2
1 1 0

}
{1 1 0

1 1 0

}
ρ2

0(np2P)

ρ0
0(np2P)

= 1

2
√

2

C02
trn(1s2S → np2P)

C00
trn(1s2S → np2P)

, (83)
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so that the degree of linear polarization is directly related to the ratio of collisional alignment
to collisional population transfer. If the fine structure of the np2P state is taken into account,
then only one component of the line is polarized. In this case (83) is replaced by

η = 1

2
√

2

2
(

3
2 → 1

2

)
A

(
np2P 3

2
→ 1s2S 1

2

)
ρ2

0

(
np2P 3

2

)
∑

J= 1
2 , 3

2
0

(
J → 1

2

)
A

(
np2PJ → 1s2S 1

2

)
ρ0

0(np2PJ )
(84)

on using (45) and (46) and where the density matrix elements ρλ
0 are given by (53).

Secondly, we consider Hα radiation. Collisions populate the degenerate states 3s, 3p and
3d and then radiation is emitted in transitions to the 2s and 2p levels. If we assume LS coupling
in (45), the expression for λ(Ji → Jf ) in (46) shows that two of the three components,
3p → 2s and 3d → 2p, are polarized. However, when fine structure is included, there are
seven components, 3s 1

2
→ 2p 1

2 , 3
2
, 3p 1

2
→ 2s 1

2
, 3p 3

2
→ 2s 1

2
, 3d 3

2
→ 2p 1

2 , 3
2

and 3d 5
2

→ 2p 3
2
, of

which the first three are unpolarized.

9.2. Transitions in helium

We assume that initially excited states n′l′ of helium are populated by collisional excitation
from the ground state. It is clear that for singlet transitions of the type n′p1P1 → ns1S0, both
LS coupling and the inclusion of fine structure give the same result, i.e.

η = 1

2
√

2

C02
trn(1s2 1S → 1snp1P)

C00
trn(1s2 1S → 1snp1P)

, (85)

cf (83). For triplet transitions n′p3P0,1,2 → ns3S1, LS coupling again gives a result similar
to (85) and in this case if the colliding particles are electrons, then collisional excitation from
the ground state can only occur through electron exchange. When allowance for fine structure
is made in (45), only two components, n′p3P1,2 → ns3S1, of the line are polarized, which
decreases significantly the total polarization achieved.

As a final example, we consider transitions 1sn′d3DJ ′ → 1snp3PJ in helium. For the
case of LS coupling, we set Ji = Li = 2 and Jf = Lf = 1 in (46) and then (45) and (82)
give

η = 1

2
√

2

2(2 → 1)

0(2 → 1)

2σ 02
trn(1s2 1S → 1sn′d3D)

2σ 00
trn(1s2 1S → 1sn′d3D)

. (86)

Allowance for fine structure splitting gives rise to six components, 1sn′d3D1 → 1snp3P0,1,2,
1sn′d3D2 → 1snp3P1,2 and 1sn′d3D3 → 1snp3P2, all of which contribute to the polarization
of the line.

10. Conclusions

A comprehensive description has been presented of all the formulae required for a complete
solution of the statistical equilibrium equations using both pair-coupling and LS-coupling
schemes to describe the structure of the target system. The target is subjected to collisions
with particles that have an anisotropic velocity distribution with cylindrical symmetry and the
theory allows for the presence of an external radiation field. The consequent polarization of
emission lines produced by radiative decay through allowed transitions can then be obtained.
The theory has many applications to the analysis of spectra and is particularly important for the
diagnostics of astrophysical and fusion plasmas. The theory can be easily specialized to the
case where the colliding particles form a monoenergetic beam and there is no external radiation
field. This then gives the appropriate form required for the interpretation of polarization and
alignment in atomic and molecular collisions.
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Appendix

The book on angular momentum by Edmonds [31] is the basic reference for the notation and
equation numbers quoted below. From equation (3.7.3) we have that

Cj1j2j3
m1m2m3

= (−1)j1−j2+m3(2j3 + 1)
1
2

(
j1 j2 j3

m1 m2 −m3

)
(A.1)

where Cabc
def and

(a b c

d e f

)
denote Clebsch–Gordan and 3j coefficients, respectively. The 3j

coefficients obey the sum rule

∑
m1m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j ′

3

m1 m2 m′
3

)
= (2j3 + 1)−1 δj3j

′
3
δm3m

′
3
, (A.2)

see (3.7.8).
The Wigner–Eckhart theorem, see (5.4.1), defines the reduced matrix elements

〈j ′‖T(k)‖j 〉 using the relation

〈j ′m′|T (k q)|jm〉 = (−1)j
′−m′

(
j ′ k j

−m′ q m

)
〈j ′‖T (k)‖j 〉. (A.3)

Matrix elements of the rotation operator D(k̂) satisfy the relations

D(j1)∗
m′

1m1
(k̂)D(j2)

m′
2m2

(k̂) = (−1)m
′
1−m1

∑
jm′m

(2j + 1)

×
(

j1 j2 j

−m′
1 m′

2 m′

)
D(j)∗

m′m(k̂)

(
j1 j2 j

−m1 m2 m

)
, (A.4)

see (4.2.7) and (4.3.2), and

D(l)
0m(k̂) =

(
4π

2l + 1

)1
2

Ylm(k̂)

= (−1)m
[
(l − m)!

(l + m)!

] 1
2

P m
l (cos θk) exp(imφk), (A.5)

see (2.5.29) and (4.1.25). In (A.5), Ylm(k̂) is a normalized spherical harmonic and P m
l (cos θk)

is the corresponding associated Legendre polynomial.

From equation (6.2.8), the 6j coefficients
{a b c

d e f

}
are related to 3j coefficients by

∑
μ1μ2μ3

(−1)l1+l2+l3+μ1+μ2+μ3

(
j1 l2 l3

m1 μ2 −μ3

)(
l1 j2 l3

−μ1 m2 μ3

)(
l1 l2 j3

μ1 −μ2 m3

)

=
(

j1 j2 j3

m1 m2 m3

) {
j1 j2 j3

l1 l2 l3

}
(A.6)
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and equations (2.5.6), (2.5.30) and (4.6.3) give the result∫
Y ∗

l1m1
(θ, φ)Pl2(cos θ)Yl3m3(θ, φ) sin θ dθ dφ

= (−1)m1 [(2l1 + 1)(2l3 + 1)]
1
2

(
l1 l2 l3

0 0 0

) (
l1 l2 l3

−m1 0 m3

)
. (A.7)

Finally we also require a result, see Messiah [24], equation (C40.c), that relates the 9j

coefficients

{
a b c

d e f

g h i

}
to 3j coefficients by

∑
m11m12m13

∑
m21m22m23

(
j11 j12 j13

m11 m12 m13

) (
j21 j22 j23

m21 m22 m23

)

×
(

j11 j21 j31

m11 m21 m31

) (
j12 j22 j32

m12 m22 m32

) (
j13 j23 j33

m13 m23 m33

)

=
(

j31 j32 j33

m31 m32 m33

)⎧⎨
⎩

j11 j12 j13

j21 j22 j23

j31 j32 j33

⎫⎬
⎭ . (A.8)

A few special cases of the coefficients listed above are also required. We have from
equations (3.7.9), (6.3.2), (6.3.4), (6.4.14) and table 5 in [31] that
(

j1 j2 0
m1 m2 0

)
= (−1)j1−m1(2j1 + 1)−

1
2 δ(j1, j2) δ(m1,−m2), (A.9)

{
j1 j1 0
1 1 j2

}
= (−1)j1+j2+1[3(2j1 + 1)]−

1
2 , (A.10)

{
j1 j1 2
1 1 j2

}
= (−1)j1+j2+1 2 [3X(X − 1) − 8j1(j1 + 1)]

[(2j1 − 1)2j1(2j1 + 1)(2j1 + 2)(2j1 + 3)5!]
1
2

,

X = (j1 − j2)(j1 + j2 + 1) + 2, (A.11)

and⎧⎨
⎩

j11 j12 j13

j21 j22 j23

j31 j32 0

⎫⎬
⎭ = (−1)j12+j21+j13+j31 [(2j13 + 1)(2j31 + 1)]−

1
2

{
j11 j12 j13

j22 j21 j31

}

× δ(j13, j23) δ(j31, j32). (A.12)
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